skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sotiropoulos, Fotis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Given the complexity of human left heart anatomy and valvular structures, the fluid–structure interaction (FSI) simulation of native and prosthetic valves poses a significant challenge for numerical methods. In this review, recent numerical advancements for both fluid and structural solvers for heart valves in patient-specific left hearts are systematically considered, emphasizing the numerical treatments of blood flow and valve surfaces, which are the most critical aspects for accurate simulations. Numerical methods for hemodynamics are considered under both the continuum and discrete (particle) approaches. The numerical treatments for the structural dynamics of aortic/mitral valves and FSI coupling methods between the solid Ωs and fluid domain Ωf are also reviewed. Future work toward more advanced patient-specific simulations is also discussed, including the fusion of high-fidelity simulation within vivo measurements and physics-based digital twining based on data analytics and machine learning techniques. 
    more » « less
  3. null (Ed.)
  4. The coronavirus disease outbreak of 2019 has been causing significant loss of life and unprecedented economic loss throughout the world. Social distancing and face masks are widely recommended around the globe to protect others and prevent the spread of the virus through breathing, coughing, and sneezing. To expand the scientific underpinnings of such recommendations, we carry out high-fidelity computational fluid dynamics simulations of unprecedented resolution and realism to elucidate the underlying physics of saliva particulate transport during human cough with and without facial masks. Our simulations (a) are carried out under both a stagnant ambient flow (indoor) and a mild unidirectional breeze (outdoor), (b) incorporate the effect of human anatomy on the flow, (c) account for both medical and non-medical grade masks, and (d) consider a wide spectrum of particulate sizes, ranging from 10 µm to 300 µm. We show that during indoor coughing some saliva particulates could travel up to 0.48 m, 0.73 m, and 2.62 m for the cases with medical grade, non-medical grade, and without facial masks, respectively. Thus, in indoor environments, either medical or non-medical grade facial masks can successfully limit the spreading of saliva particulates to others. Under outdoor conditions with a unidirectional mild breeze, however, leakage flow through the mask can cause saliva particulates to be entrained into the energetic shear layers around the body and transported very fast at large distances by the turbulent flow, thus limiting the effectiveness of facial masks. 
    more » « less
  5. Abstract In meandering rivers, interactions between flow, sediment transport, and bed topography affect diverse processes, including bedform development and channel migration. Predicting how these interactions affect the spatial patterns and magnitudes of bed deformation in meandering rivers is essential for various river engineering and geoscience problems. Computational fluid dynamics simulations can predict river morphodynamics at fine temporal and spatial scales but have traditionally been challenged by the large scale of natural rivers. We conducted coupled large‐eddy simulation and bed morphodynamics simulations to create a unique database of hydro‐morphodynamic data sets for 42 meandering rivers with a variety of planform shapes and large‐scale geometrical features that mimic natural meanders. For each simulated river, the database includes (a) bed morphology, (b) three‐dimensional mean velocity field, and (c) bed shear stress distribution under bankfull flow conditions. The calculated morphodynamics results at dynamic equilibrium revealed the formation of scour and deposition patterns near the outer and inner banks, respectively, while the location of point bars and scour regions around the apexes of the meander bends is found to vary as a function of the radius of curvature of the bends to the width ratio. A new mechanism is proposed that explains this seemingly paradoxical finding. The high‐fidelity simulation results generated in this work provide researchers and scientists with a rich numerical database for morphodynamics and bed shear stress distributions in large‐scale meandering rivers to enable systematic investigation of the underlying phenomena and support a range of river engineering applications. 
    more » « less